Pharmacological and immunohistochemical characterization of calmodulin-stimulated (Ca(2+)+Mg(2+))-ATPase in cultured porcine aortic endothelial cells.

نویسندگان

  • E J McConnell
  • G W White
  • J J Brokaw
  • B U Raess
چکیده

Plasma membrane (Ca(2+)+Mg(2+))-ATPase and Ca(2+) transport activities, best characterized in human erythrocytes, are stimulated by calmodulin and thought to play a crucial role in the termination of cellular Ca(2+) signaling in all cells. In plasma membranes isolated from cultured porcine aortic endothelial cells, the (Ca(2+)+Mg(2+))-ATPase was not readily measured. This is in part because of an overabundance of nonspecific Ca(2+)- and/or Mg(2+)-activated ecto-5'-nucleotide phosphohydrolases. Moreover, addition of exogenous calmodulin (10(-9) to 10(-6) mol/L) produced no measurable stimulation of ATPase activities, suggesting a permanently activated state or, alternatively, a complete lack thereof. To establish and verify the presence of a calmodulin-regulated (Ca(2+)+Mg(2+))-ATPase activity in these endothelial cells, immunohistochemical localization using a monoclonal mouse anti-(Ca(2+)+Mg(2+))-ATPase antibody (clone 5F10) was applied to intact pig aorta endothelium, cultured endothelial monolayers, and isolated endothelial plasma membrane fractions. This approach clearly demonstrated Ca(2+) pump immunoreactivity in each of these preparations. To confirm functional calmodulin stimulation of the (Ca(2+)+Mg(2+))-ATPase, 10(-5) mol/L calmidazolium (R24571) was added to the isolated plasma membrane preparation, which lowered the (Ca(2+)+Mg(2+))-ATPase activity from 143.0 to 78.15 nmol P(i)/mg protein x min(-1). This calmidazolium-reduced activity could then be stimulated 113.1+/-0.8% in a concentration-dependent manner by the addition of exogenous calmodulin (10(-7) to 2 x 10(-6) mol/L) with an EC(50) of 3.45+/-0.04 x 10(-7) mol/L (n=4). This represents a competitive lowering of the apparent calmodulin affinity by approximately 100 compared with other unopposed calmodulin-stimulated processes. Together, these findings support evidence for the presence of a calmodulin-stimulated plasma membrane (Ca(2+)+Mg(2+))-ATPase activity in cultured porcine aortic endothelial cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pharmacological and Immunohistochemical Characterization of Calmodulin-Stimulated (Ca1Mg)-ATPase in Cultured Porcine Aortic Endothelial Cells

Plasma membrane (Ca1Mg)-ATPase and Ca transport activities, best characterized in human erythrocytes, are stimulated by calmodulin and thought to play a crucial role in the termination of cellular Ca signaling in all cells. In plasma membranes isolated from cultured porcine aortic endothelial cells, the (Ca1Mg)-ATPase was not readily measured. This is in part because of an overabundance of nons...

متن کامل

Involvement of Ca2+/calmodulin-dependent protein kinase II in endothelial NO production and endothelium-dependent relaxation.

Nitric oxide (NO) is synthesized from l-arginine by the Ca(2+)/calmodulin-sensitive endothelial NO synthase (NOS) isoform (eNOS). The present study assesses the role of Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) in endothelium-dependent relaxation and NO synthesis. The effects of three CaMK II inhibitors were investigated in endothelium-intact aortic rings of normotensive rats. NO ...

متن کامل

Involvement of Na(+)/Ca(2+) exchanger in endothelial NO production and endothelium-dependent relaxation.

Endothelial nitric oxide (NO) synthase (eNOS) is controlled by Ca(2+)/calmodulin and caveolin-1 in caveolae. It has been recently suggested that Na(+)/Ca(2+) exchanger (NCX), also expressed in endothelial caveolae, is involved in eNOS activation. To investigate the role played by NCX in NO synthesis, we assessed the effects of Na(+) loading (induced by monensin) on rat aortic rings and cultured...

متن کامل

آمیزه مناسبی از اکتینیدین میوه کیوی و تریپسین برای جداسازی و کشت سلول‌های اندوتلیال آئورت موش صحرایی

Background: Proteolytic enzymes, especially collagenases, are used for digestion of extracellular matrix, cell isolation and primary culture. Because of the problems in purification and low amount of collagenases in bacterial or animal sources, it is important to find new sources of the enzymes. So, in the present study actinidin, a plentiful protein in kiwifruit was purified and a mixture of ...

متن کامل

Induction of Endothelial NO Synthase by Hydrogen Peroxide via a Ca/Calmodulin-Dependent Protein Kinase II/Janus Kinase 2–Dependent Pathway

We have recently demonstrated that hydrogen peroxide (H2O2) is an extremely potent stimulus of endothelial NO synthase (eNOS) gene expression. The present study was designed to identify the signaling mechanisms mediating this response. Induction of eNOS expression by H2O2 was found to be Ca 21 dependent, inasmuch as it was blocked by BAPTA-AM. Further studies have indicated that Ca/calmodulin-d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 86 2  شماره 

صفحات  -

تاریخ انتشار 2000